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An analysis of certain types of multiplicative congruential generators –

otherwise known for their application to the sequential generation of pseudo-

random numbers – reveals their relation to the coordinate description of lattice

points in two-dimensional primitive sublattices. Taking the index of the lattice–

sublattice transformation as the modulus of the multiplicative congruential

generator, there are special choices for its multiplier which induce a symmetry-

preserving permutation of lattice-point coordinates. From an analysis of similar

sublattices with hexagonal and square symmetry it is conjectured that the cycle

structure of the permutation has its crystallographic counterpart in the

description of crystallographic orbits. Some applications of multiplicative

congruential generators in structural chemistry and biology are discussed.

1. Lattice–sublattice transformations

Given a two-dimensional lattice � of unit size, which shall be

either the hexagonal (alias triangular) lattice A2 or the square

lattice Z2 (Conway & Sloane, 1999), we restrict our discussion

to primitive sublattices �0 � � similar to their respective

basic lattice �.

A sublattice �0 � � is called primitive if no integer n 2 N

with n> 1 exists, for which ð1=nÞx 2 � holds true for all

x 2 K0, where x is a generic lattice vector of the sublattice. A

sublattice �0 � � is called similar if the transformation from

the lattice � to a sublattice �0 with enlarged unit cell satisfies

�0 ¼ �ð�Þ, where � is called a similarity transformation

(Conway et al., 1999), such that all angles are preserved while

all distances are changed in the same ratio. Requiring the

sublattices to be similar and primitive enforces them to be

scaled and rotated copies of themselves (cf. Fig. 1).

A more general approach to sublattices of the hexagonal

lattice is given by Bernstein et al. (1997) and a great deal of

crystallographic research concerning sublattices in general is

due to Rutherford (1992, 1993, 1995, 2006, 2009). Lattices of

arbitrary dimension and different symmetry are treated by

Conway & Sloane (1999).

For a lattice � with basis (a, b) the transformation to the

basis ða0; b0Þ of the sublattice �0 is described by the matrix

equation

ða0; b0Þ ¼ ða; bÞM; ð1Þ

where M is a 2� 2 transformation matrix (transformed

quantities are labeled by a prime). The coordinates transform

according to

ðx0; y0Þt ¼ M�1ðx; yÞt; ð2Þ

where M�1 is the matrix inverse of M and t stands for trans-

position. For a hexagonal lattice–sublattice pair M corre-

sponds to the generator matrix

T ¼
q �r

r q� r

� �
; while Q ¼

q �s

s q

� �
ð3Þ

is the analogous matrix for a square lattice–sublattice pair

(Müller & Brelle, 1995). Here, the matrices T and Q conform

to the conventional choice of the basis, as preferred in crys-

tallography, which may be transformed to any other basis by

the action of an integer matrix N with determinant Nj j ¼ 1.

This has to be accounted for in the general case, where the

lattice and the sublattice each may be defined by a noncon-

ventional choice of their basis. The given generator matrix

M ¼ fmijg allows for another definition of a primitive sublat-

tice – a lattice is primitive if the greatest common divisor (gcd)

of the matrix entries is unity, gcdðmijÞ ¼ 1. The matrix inverses

are given by

T�1 ¼
1

T

q� r r

�r q

� �
and Q�1

¼
1

Q

q s

�s q

� �
; ð4Þ

where T and Q are equal to the overall enlargement factor of

the unit-cell transformation given by the index M ¼ ½� : �0�
of the lattice–sublattice transformation. The index gives the

number of lattice points within a unit mesh of the sublattice

and equals its relative volume, which is calculated by evalu-

ating the determinant Mj j ¼ M. For a hexagonal sublattice Tj j

is given by the quadratic form Tðq; rÞ ¼ q2 � qrþ r2, whereas

Q
�� �� ¼ Qðq; sÞ ¼ q2 þ s2 is the corresponding relation for a



square sublattice. Moreover, the values obtained for T or Q

correspond to the number-theoretic norms NðzÞ of the

respective sublattices, which equal the squared distances

between two lattice points (Conway & Sloane, 1999).

The possible values for T and Q form the sequences

T ¼ 0; 1; 3; 4; 7; 9; 12; 13; 16; 19; 21; 25; 27; 28; 31; 36; 37; . . .

and

Q ¼ 0; 1; 2; 4; 5; 8; 9; 10; 13; 16; 17; 18; 20; 25; 26; 29; 32; . . .

solely determined by the geometry of the basic lattice (Fig. 1;

Sloane, 2008: sequences A003136 and A001481). The question

whether a given number N is an element of the set T (or Q)

may be judged from its prime factorization [Hardy & Wright

(2008); see also Ball (1971) and Conway et al. (1999)]: N 2 T

(N 2 Q) if primes p of the form p � 2 ðmod 3Þ [p � 3 ðmod 4Þ]

appear to even powers only.

2. Multiplicative congruential generators

A linear congruential generator (LCG) is defined by the

recurrence relation

Znþ1 � mZn þ a ðmod MÞ; ð5Þ

where m and a are multiplicative and additive constants and M

is the modulus ðm; a;M 2 ZÞ. The Zi are integer variables with

Z0 the starting value (seed) of the LCG. The special case

where a ¼ 0 is known as a multiplicative congruential

generator (MCG; Downham & Roberts, 1967). MCGs are

among the most used algorithms for the generation of pseudo-

random number sequences and the first to introduce MCGs

for this purpose was Lehmer in 1949 [see Knuth (1998) for a

survey]. Given a reasonable choice of parameters, MCGs

enable a simple, portable and efficient way of computing any

required amount of pseudo-random numbers. In order to

obtain pseudo-random numbers lying in the interval ½0; 1Þ one

introduces a normalization by dividing each number with the

modulus: zi ¼ Zi=M. It was only in 1968 that Marsaglia found

an inherent defect of MCGs, namely that tuples of n successive

numbers generated by an MCG and plotted in a Euclidean

space of n dimensions, e.g. inside a unit hypercube [i.e. an

n-dimensional measure polytope; see Coxeter (1973), p. 123],

fall into at most ðn! MÞ1=n parallel and equidistant ðn� 1Þ-

dimensional hyperplanes (Marsaglia, 1968, 1970). Essentially,

the lattice structure of an MCG guarantees a uniform distri-

bution of pseudo-random numbers, although their random-

ness, which may be evaluated and expressed by different

statistical methods and measures, depends crucially on the

choice of the parameters. One way to decide on which choice

of parameters is to be preferred in order to get a reasonably

good MCG is to analyze the exact nature of the lattice

structure of the MCG by means of determining the magnitude

of the orthogonal interplanar distance between neighboring

hyperplanes via the spectral test algorithm. The action of an

MCG on a given set of numbers is illustrated in Fig. 2.

3. The use of MCGs in crystallography

To our knowledge, a first use of a modular algebra for the

description of crystal structures, similar in its intention to our

approach but differing in its details, traces back to the work of

Loeb (1958, 1962, 1964; Morris & Loeb, 1960), which appears

to be singular, however, and does not mention the concept of

an MCG explicitly.

While MCGs and their lattice structure are extensively

studied in discrete mathematics (e.g. Beyer et al., 1971; Ripley,

1983; Afflerbach, 1986; L’Ecuyer, 1999), their relation to

crystallography seems to be nearly unexplored.

An explanation for this and the rationale behind the

suggested use of MCGs in crystallography is given by the

fundamental differences in the points of view of a mathema-

tician and a crystallographer regarding the lattice structure of

MCGs:

(1) Regarding pseudo-random number generation, any

repetition of the number sequence is considered prohibitive.

Since each LCG inheres a fundamental periodicity, with the

modulus acting as an upper bound, any MCG feasible for

practical applications in pseudo-random number generation is

in need of a high modulus, irrespective of the maximal period

achievable, which depends on both the modulus and the

multiplier. For instance, an MCG with modulus

M ¼ 231 � 1 ¼ 2 147 483 647 (Mersenne prime M31), a multi-

plier m ¼ 75 ¼ 16 807 (a primitive root modulo M31) and the
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Figure 1
Possible indices � 100 for similar hexagonal and square sublattices. For
ease of depiction both types of sublattices share a common direction q,
thus showing the �s axis instead of the s axis for the square sublattices.
Primitive sublattices, for which gcdðq; rÞ ¼ gcdðq; sÞ ¼ 1, are framed by
polygons, nonprimitive ones by circles.



initial seed relatively prime to M31 was proposed by Park &

Miller (1988) as a minimal standard MCG, representing a

reasonably good method for pseudo-random number

generation in terms of the statistical quality of the resulting

sequences. Nevertheless, it is clear that 231 � 1 is far too high

to act as a physically reasonable index for a crystallographic

lattice–sublattice transformation, although the sublattice

index T, regarding the triangular surface lattice of the largest

known virus, Mimivirus, is of the order 103 (Xiao et al., 2009)!

(2) In a mathematical sense the lattice structure of MCGs

proves to be of an ambivalent nature: given a good choice of

parameters (m, M) the lattice structure of an MCG warrants a

uniform distribution of the generated numbers, a necessary

condition for achieving the desired degree of randomness. On

the contrary, the lattice structure of an MCG is not at all a

good instance for a truly random structure, leading to serious

problems, especially if the parameters are poorly chosen (as

was the case for the MCG known as RANDU; Knuth, 1998).

From the viewpoint of a crystallographer, however, the lattice

structure of an MCG is highly welcome and seems to be

interesting in its own right.

(3) Finally, the recursive definition of an MCG gives rise to

serial correlations between successive elements in the

sequence of pseudo-random numbers, thus prohibiting the use

of MCGs for certain applications, e.g. cryptographic purposes

or special types of Monte Carlo simulations. From the view-

point of a crystallographer, the serial correlations are inevi-

tably linked to the symmetry of the underlying lattice, as will

be exemplified in the following. Therefore the serial correla-

tions will not be regarded as some kind of defect of an MCG,

but as an essential feature, i.e. a certain type of structural

invariant.

4. The lattice structure of MCGs

To illustrate the lattice structure of an MCG we chose the

MCG with modulus M ¼ 21 and the (special) multiplier

� ¼ 17.

The action of the MCG on each integer Zn from the interval

½0; 21Þ is shown in equation (6). The Zn are listed in the upper

row and in ascending order, whereas the lower row contains

the resulting integers Znþ1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 17 13 9 5 1 18 14 10 6 2 19 15 11 7 3 20 16 12 8 4

� �
:

ð6Þ

An inspection of this result shows that the action of an MCG is

described as a mapping of a set of integers onto itself while

maintaining a one-to-one correspondence between them. In

the present case the set under consideration is given by

Z=21Z ¼ Zn j Zn 2 Z; 0 � Zn < 21
� �

, the residue class ring

modulo 21. A bijective mapping of a set onto itself is a

permutation and equation (6) is one notation for it. A more

concise notation is given by the cycle representation

ð0Þð1 17 16 20 4 5Þð2 13 11 19 8 10Þð3 9 6 18 12 15Þð7 14Þ;

ð7Þ

which shows the decomposition of a permutation into a

product of disjoint cycles. A single cycle

ðZ1 Z2 . . . Znþ1 . . . Z‘�1 Z‘Þ is characterized by the number

of its elements Zi and its cycle length ‘, and is itself a

permutation. A cycle of length ‘ ¼ 1, e.g. (0) in equation (7), is

a fixed point of the permutation and is usually skipped in its

cycle representation, although listed throughout this work for

reasons of completeness. Cycles of length ‘ ¼ 2, exchanging

two elements, e.g. ð7 14Þ in equation (7), are called transpo-

sitions. Calculating the (n + 1)th element of a cycle from the

first one is carried out by using

Znþ1 � �
n Z1 ðmod MÞ ð8Þ

or

Znþm � �
n Zm ðmod MÞ ð9Þ

in the general case. Thus the cycle with the seed Z1 ¼ 1 is

given by the multiplier � raised to its powers, i.e.

ð�0 �1 . . . �‘�1Þ ðmod MÞ.

In order to show the lattice structure of this MCG in two

dimensions, the sequence of numbers in each cycle, repre-

sented by equation (7), is transformed into a set of 21 coor-

dinate pairs ðXi;YiÞ,

ð0; 0Þ

ð1; 17Þ; ð17; 16Þ; ð16; 20Þ; ð20; 4Þ; ð4; 5Þ; ð5; 1Þ

ð2; 13Þ; ð13; 11Þ; ð11; 19Þ; ð19; 8Þ; ð8; 10Þ; ð10; 2Þ

ð3; 9Þ; ð9; 6Þ; ð6; 18Þ; ð18; 12Þ; ð12; 15Þ; ð15; 3Þ

ð7; 14Þ; ð14; 7Þ

ð10Þ

with successive numbers in the sequence forming overlapping

pairs. Crystallographic coordinates are obtained after the

normalization ðxi; yiÞ ¼ ðXi=M;Yi=MÞ with M ¼ 21. Now, the

normalized coordinate set of equation (10), plotted in the

reference frame of a hexagonal unit cell, clearly reveals the
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Figure 2
Action of the MCG with M ¼ 7, m ¼ 3 on the set Z=7Z ¼ f0; . . . ; 6g,
illustrating the cyclic nature – modular arithmetics is colloquially known
as clock arithmetic – of the permutation ð0Þð1 3 2 6 4 5Þ resulting in the
coordinates ðXi;YiÞ ¼ ð0; 0Þ; ð1; 3Þ; ð2; 6Þ; ð3; 2Þ; ð4; 5Þ; ð5; 1Þ; ð6; 4Þ. For a
general introduction into permutations, modular arithmetics and other
number-theoretic topics see Ash & Gross (2006).

(6)



hexagonal lattice structure of the MCG under consideration

(Fig. 3); each cycle represents a set of lattice points equivalent

by the symmetry of the lattice (plane group p6).

It should be pointed out again that a lattice structure is an

intrinsic feature of any MCG, whatever the choice of multi-

plier m and modulus M (and reference frame) would be for a

particular one. Lattice structures in accordance with hexa-

gonal (or square) symmetry, however, are restricted to MCGs

with a special choice of multiplier � and modulus T (or Q) and

their representation within an appropriate (i.e. symmetry-

adapted) coordinate system.

Several questions about the nature of the MCG and its

corresponding lattice structure immediately arise:

(1) Is there a relation between the values chosen for the

modulus and the multiplier of an MCG and its lattice struc-

ture?

(2) What information, if any, can be retrieved from the

knowledge of the cycle structure of an MCG-induced

permutation in terms of lattice–sublattice transformations?

(3) If there is a one-to-one correspondence between an

MCG’s lattice structure and the crystallographic description

thereof, what are the reasons for it?

(4) Are there generalizations?

In the following sections we will address each question,

proposing answers for them.

5. Construction of an MCG for sublattices of given
index

To explain the interrelation of the values chosen for the MCG

and its lattice structure we refer to Fig. 3, essentially reversing

the problem, i.e. we will show how to construct a certain MCG

from a given lattice–sublattice pair. The first observation to

make is that the coordinates of any lattice point are given as

multiples of 1=M, where M is the sublattice index. A second

observation is that in a primitive sublattice each lattice point

in the sublattice unit cell can be reached successively (and

therefore sorted in ascending order), because all lattice points

lie on a single line crossing the origin of the lattice and some

translationally equivalent point (e.g. direction ½14� in Fig. 3 as

well as ½140� in Fig. 6). In order to construct the MCG and find

the special value � of the multiplier, one only has to search for

the integer value of the shift in the y coordinate necessary to

reach a lattice point while going 1=M in the x direction. This

may be done graphically for low moduli/sublattice indices and

algebraically for the higher ones. This is to find integral

solutions u, v and � to the equation

uaþ vb ¼ ð1=MÞa0 þ ð�=MÞb0: ð11Þ

In the present case, 17 steps, in units of 1=M, are needed to

reach the first lattice point while advancing one step in x (thus

� ¼ 17). The second lattice point is reached again after 17

steps, modulo the lattice translations (given by M, here

M ¼ 21), and so on, until each lattice point is crossed exactly

once. Both the multiplier and the modulus, and therefore the

MCG, are uniquely determined by this process:

Yi � 17Xi ðmod 21Þ: ð12Þ

Alternatively, by advancing one step in the y direction first and

asking for the number of steps needed in the x direction to

reach a lattice point one defines another MCG (with the

special multiplier �):

Xi � 5Yi ðmod 21Þ: ð13Þ

Equation (13) describes the inverse function to equation (12).

Accordingly, � and � are multiplicative inverse modulo 21, i.e.

1 � �� ðmod 21Þ. Thus, the cycle structure associated with the

MCG of equation (13) describes the inverse permutation,

ð0Þð1 5 4 20 16 17Þð2 10 8 19 11 13Þð3 15 12 18 6 9Þð7 14Þ;

ð14Þ

to equation (7). The algebraic determination of � then

consists of finding the integer solutions u, v, � for

uaþ vb ¼ ð�=MÞa0 þ ð1=MÞb0: ð15Þ

The pairs ðu; vÞ and ðu; vÞ each describe the coordinates of a

point in terms of the basic lattice �. For practical purposes

equations (11) and (15) are rewritten using the matrix form-

alism of equation (3) yielding

ðu; vÞt ¼ ð1= Mj jÞM 1; �ð Þ
t

ð16Þ

u; vð Þ
t
¼ ð1= Mj jÞM �; 1ð Þ

t
ð17Þ

as the equivalent equations. In addition, exchanging the

coordinates while retaining the multiplier, e.g.
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Figure 3
Hexagonal sublattice of index Tð5; 4Þ ¼ 21, �! �00. With respect to the
solid circles the sublattice is of index Tð3; 1Þ ¼ 7 only, �0 ! �00. The
corresponding MCGs are given by Yi � 17Xi ðmod 21Þ and
Yi � 3Xi ðmod 7Þ. See Fig. 4 for the enantiomorphous sublattice
Tð5; 1Þ ¼ 21 and Fig. 6 for chemical realizations.



Xi � 17Yi ðmod 21Þ; ð18Þ

Yi � 5Xi ðmod 21Þ; ð19Þ

[cf. equations (12) and (13)] gives rise to a description of the

enantiomorphic sublattice.

From Fig. 3 one sees some additional sublattice structure in

a hexagonal sublattice of index 21. Starting from the basic

lattice there are additional lattice–sublattice transformations

of indices 3 and 7, respectively. In terms of group–subgroup

relations this corresponds to klassengleiche transitions

(isomorphic if the space-group type of the group and the

subgroup are the same). In shorthand notation:

�!
k 3

�0 !
k 7

�00 ffi �!
k 21

�00: ð20Þ

This has an equivalent in number-theoretic terms,

Z=21Z ¼ Z=3Z� Z=7Z; ð21Þ

and another one with respect to MCGs, where it can be shown

that the weighted sum of two (or n) MCGs with coprime

moduli M1, M2; . . . ;Mn is equivalent to another combined

MCG with modulus M ¼
Qn

i¼1 Mi [Wichmann-Hill MCGs; see

L’Ecuyer & Tezuka (1991) and Sakamoto & Morita (1995) for

details]. Take, in particular, two MCGs �1 and �2 with

�1: Znþ1 � 2Zn ðmod 3Þ; ð22Þ

and

�2: Znþ1 � 3Zn ðmod 7Þ: ð23Þ

A combined MCG �1þ2 may then be defined as

�1þ2: znþ1 � n1ð�1=3Þ þ n2ð�2=7Þ ðmod 1Þ; ð24Þ

with integer weighting factors ni and normalized output lying

in the interval ½0; 1Þ. The sequence of numbers resulting from

the combined MCG with weights n1 ¼ 1 and n2 ¼ �2 proves

to be identical to the one generated by the single MCG

znþ1 ¼ ð1=21Þf17Zn ðmod 21Þg.

A profound number-theoretic analysis may be given,

making use of complex number fields [see Conway & Sloane

(1999) and Hardy & Wright (2008)].

The points of the hexagonal lattice A2 are then identified

with the ring Z½!� of Eisenstein integers, which are complex

numbers of the form z ¼ qþ r! where q; r 2 Z,

! ¼ ð1=2Þð�1þ 31=2iÞ and i2 ¼ �1. The unit ! is one of the

sixth roots of unity, z6 ¼ 1, where z 2 f
1;
!;
!2g with !2

the complex conjugate of !, i.e. !2 ¼ ð1=2Þð�1� 31=2iÞ. The

number-theoretic norm of an Eisenstein integer is given by

Nðqþ r!Þ = jqþ r!j2 = ðqþ r!Þðqþ r!2Þ = q2 � qrþ r2, i.e.

Nðqþ r!Þ ¼ T. An application of Eisenstein integers in

structural chemistry is given by Mitani & Niizeki (1987).

A similar approach is possible for the square lattice Z2,

whose points are identified with the ring Z½i� of Gaussian

integers z ¼ qþ si with q; s 2 Z and i2 ¼ �1. The unit i is one

of the fourth roots of unity, z4 ¼ 1, where z 2 f
1;
ig.

The number-theoretic norm of a Gaussian integer is given

by Nðqþ siÞ ¼ jqþ sij2 ¼ ðqþ siÞðq� siÞ ¼ q2 þ s2, i.e.

Nðqþ siÞ ¼ Q.

For a depiction of the lattice structure of the Eisenstein and

Gaussian integers see Conway & Smith (2005).

In either case a single complex number is sufficient to

describe a lattice–sublattice pair [a complex number

z ¼ r expði’Þ elegantly describes a roto-dilation in two-

dimensions, where the scaling factor r is given by the modulus

of z, r ¼ jzj, and the positive rotation angle ’ is given by the

argument of z, ’ ¼ argðzÞ].

Notably, both the Eisenstein and the Gaussian integers have

a unique factorization, up to units, into the primes of their

respective number field [see e.g. Baake & Grimm (2006)

treating the case of the Eisenstein integers and Hardy &

Wright (2008) for a general overview]. For a hexagonal lattice

with Tð5; 1Þ ¼ 21 the corresponding Eisenstein number is

5þ ! and

5þ ! ¼ ð2þ !Þð2� !Þ ð25Þ

is its prime factorization, where

Nð2þ !Þ ¼ 3 and Nð2� !Þ ¼ 7 ð26Þ

are the respective number-theoretic norms [cf. equations (20),

(21) and (24)].

Referring to the cycle representation

ð0Þ ð1 17 16 20 4 5Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
gcd ¼ 1

ð2 13 11 19 8 10Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

ð3 9 6 18 12 15Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
3

ð7 14Þ|fflffl{zfflffl}
7

;

ð27Þ

there seems to be a similar relation, expressing itself in the

values of the greatest common divisor (gcd) of the different

cycles. Actually, the cycles for which gcd ¼ 3 and gcd ¼ 7 each

are associated to a set of points ðXi;YiÞ corresponding to

sublattices of index 3 and 7, respectively, in reference to a

common basic lattice � [cf. equation (10) and Fig. 3].

This correspondence of the coordinates is deeper, having

some far-reaching crystallographic implications. Essentially

there is not only a correspondence of the coordinate pairs

derived from the action of an MCG with some points of the

lattice, but a correspondence encompassing a set of symmetry-

equivalent points (crystallographic orbit or point configura-

tion, depending on whether the symmetry group is included or

not). This can be rationalized by analyzing the action

(symmetry operation R) of the six- or fourfold rotation axis

(with negative rotation sense, i.e. clockwise rotation) in the

plane groups p6 or p4, respectively, expressed in matrix

notation as

R: 6�ð0 0Þ ¼
0 1

1 1

� �
or 4�ð0 0Þ ¼

0 1

1 0

� �
ð28Þ

for transformations of the type

ðx0; y0Þt ¼ Rðx; yÞt: ð29Þ

The essential part of the transformation is given by the

mapping x0 ¼ y. The MCG, in the first place, describes a one-

to-one mapping of an x-coordinate value to a y-coordinate

value, x! y, whereas the symmetry operation represented by

R gives a transformed x0-coordinate value from the

y-coordinate value of the original point, y! x0. One after
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another this describes a mapping x! x0 and consequently

one of the type x! x0 ! x00 . . ., until the original point is

reached again, due to the cyclic nature of the symmetry

operation of a rotation axis.

In some sense it is not surprising at all to find permutations

on the very ground of the description of crystal structures.

Treating atoms as point-like particles, characterized by their

coordinates, the space-group symmetry will essentially map all

of the atoms onto each other in some way, permutating their

relative coordinates, because the set of crystallographically

independent atoms is closed.

6. Cycle representations of MCGs

From the definition given in equation (5) it is clear that MCGs

have an inherent fundamental periodicity, i.e. their modulus,

fixing the maximal length of a single cycle in their cycle

representation. For an MCG a maximal cycle length of

‘ ¼ M � 1 may be achieved obeying certain restrictions,

namely if the modulus is prime and both the multiplier and the

modulus are relatively prime, i.e. gcdðm;MÞ ¼ 1. The

maximum achievable cycle length for composite moduli as

well as powers of two or prime powers can be elucidated using

a theorem of Carmichael (1910).

Altogether, given a fixed M, the choice of the multiplier m

fully determines the behavior of the MCG, as is illustrated in

the following for a hexagonal sublattice:

Tð3; 1Þ ¼ 7 m ¼ 1 ð0Þð1Þð2Þð3Þð4Þð5Þð6Þ

m ¼ 2 ð0Þð1 2 4Þð3 6 5Þ

� ¼ 3 ð0Þð1 3 2 6 4 5Þ ffi 6�

m ¼ 4 ð0Þð1 4 2Þð3 5 6Þ

� ¼ 5 ð0Þð1 5 4 6 2 3Þ ffi 6þ

m ¼ 6 ð0Þð1 6Þð2 5Þð3 4Þ:

In the case m ¼ 1 every point is mapped onto itself, corre-

sponding to the identity operation. Every other multiplier

leads to a distinct cycle decomposition, representing different

types of permutations. For every permutation there is the

inverse permutation described by an MCG with a different

multiplier. In the case m ¼ 6 the permutation consists of the

fixpoint and transpositions only, therefore being self-inverse.

In the special cases were m ¼ � or m ¼ � the cycle repre-

sentation consists of the fixpoint and a single cycle of length

‘ ¼ 6 each, which corresponds to a crystallographic orbit

reflecting the symmetry of the sixfold rotation axis [� (�) for

the 6� (6þ) axis with negative (positive) rotation sense].

7. Cycle representations for special values of T and Q

The following cycle representations serve as examples to

illustrate the use of MCGs in a crystallographic context.

Besides this, they are interesting in their own right.

7.1. The first sublattices with equal index: T = Q = 13

There are a number of instances in which hexagonal and

square sublattices share the same index. This is true for all

indices given by a square number and for several other cases.

Among these the indices associated with a primitive sublattice

are again of interest here. These are 13, 37, 61, 73, 97 (below

100). The cycle representations for the simplest case

T ¼ Q ¼ 13 are given by

Tð4; 1Þ ¼ 13

� ¼ 4 ð0Þð1 4 3 12 9 10Þð2 8 6 11 5 7Þ

��� ¼ 10 ð0Þð1 10 9 12 3 4Þð2 7 5 11 6 8Þ

Qð3; 2Þ ¼ 13

� ¼ 8 ð0Þð1 8 12 5Þð2 3 11 10Þð4 6 9 7Þ

��� ¼ 5 ð0Þð1 5 12 8Þð2 10 11 3Þð4 7 9 6Þ

showing that which type of cycle decompositions is realized for

a hexagonal–square sublattice pair of given index depends

solely on the choice of the multiplier (cf. Fig. 4).

7.2. The first sublattices with fully structured cycle decom-
positions: T = 21, Q = 10

We call any cycle decomposition fully structured if its

representation in symbolic notation is given by either

ð0ÞðZi 1 . . . Zi 6Þ
n
i¼1ð

1
3 T 2

3 TÞ or ð0ÞðZi 1 . . . Zi 4Þ
n
i¼1ð

1
2 QÞ,

depending on the symmetry (hexagonal or square) of the

sublattice under consideration. Thus, a fully structured cycle

decomposition contains the fixpoint ð0Þ, a variable number n

of cycles of length 6 (or 4), and, in addition, a single cycle of

length 2 (or 1), whose content is directly derived from the

knowledge of the sublattice index T (or Q). The first such

cycle decompositions are reached at the index values T ¼ 21

and Q ¼ 10 and are given below (cf. Fig. 4).

Tð5; 1Þ ¼ 21

� ¼ 5 ð0Þð1 5 4 20 16 17Þð2 10 8 19 11 13Þð3 15 12 18 6 9Þð7 14Þ

� ¼ 17 ð0Þð1 17 16 20 4 5Þð2 13 11 19 8 10Þð3 9 6 18 12 15Þð7 14Þ

Qð3; 1Þ ¼ 10

� ¼ 3 ð0Þð1 3 9 7Þð2 6 8 4Þð5Þ

��� ¼ 7 ð0Þð1 7 9 3Þð2 4 8 6Þð5Þ

The sublattices with fully structured cycle representations are

the ones where the one-to-one correspondence between

number-theoretic and crystallographic terms can be fully

illustrated (cf. x8).

A survey of the cycle decompositions of primitive similar

sublattices for reasonably small indices ð� 61Þ is presented in

tabular form, with Table 1 giving the hexagonal and Table 2

giving the square cases.

7.3. The first pair of distinct sublattices: T = 91, Q = 65

The number of representations of a given index increases

with its value. The index T ¼ 49 is the first one that can be

constructed in two different ways, i.e. as Tð7; 0Þ and Tð8; 3Þ.
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The same holds true for Q ¼ 25, where Qð5; 0Þ and Qð4; 3Þ

yield the same index. In these cases one of the solutions is a

nonprimitive sublattice, whereas the other one gives rise to

two enantiomorphic sublattices (which is true in general for all

sublattice indices not lying on any of the bold lines in Fig. 1).

The first case, where two distinct pairs of primitive sublattices

are encountered, is given by T ¼ 91 ¼ 7 � 13 and

Q ¼ 65 ¼ 5 � 13, respectively. We restrict ourselves in giving

not the full cycle representation here, but instead the special

multipliers,

Tð10; 1Þ ¼ 91 � ¼ 10 � ¼ 82;
Tð11; 5Þ ¼ 91 � ¼ 75 � ¼ 17;

Qð7; 4Þ ¼ 65 � ¼ 18 � ¼ 47;
Qð8; 1Þ ¼ 65 � ¼ 8 � ¼ 57;

ð30Þ

from which the cycle representations can be easily

constructed.

8. Translating the terms of MCGs into the language of
lattice–sublattice transformations and the coordinate
description of crystal structures

Following the discussions in the previous sections it becomes

clear that there is indeed a one-to-one correspondence

between the terms used for the description of MCGs and the

ones used for the description of crystal structures. Table 3 lists

the crystallographic counterparts to terms used throughout

this report for the characterization of MCGs. Table 4 is an

extension of Table 3 intended to illustrate the one-to-one

correspondence between the cycle structure of an MCG and

the Wyckoff sequence of a crystal structure based on a lattice–

sublattice pair. It gives the coordinates ðx; yÞ of the special

positions for the plane groups p6 and p4, their corresponding

Wyckoff symbols and the corresponding cycles in the cycle

representation of a MCG-induced permutation. The holohe-

dral groups p6mm and p4mm are not considered here because

they are only valid for the simplest cases of primitive sublat-

tices. The Wyckoff positions 1a correspond to the fixpoint of

the permutation induced by an MCG which, identified as the

origin of the unit cell, is also the fixpoint in the lattice–

sublattice transformation. The b-lettered Wyckoff positions

correspond to special positions at high-symmetry points inside

the unit cells. The c-lettered Wyckoff positions instead have no

counterpart in the cycle representations, because an occupa-
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Table 1
Cycle decompositions of primitive hexagonal similar sublattices ðT � 61Þ.

T (q, r) � � Cycle representation

3 (2, 1) 2 2 (0)(1 2)
7 (3, 1) 3 5 (0)(1 3 2 6 4 5)

13 (4, 1) 4 10 (0)(1 4 3 12 9 10)(2 8 6 11 5 7)
19 (5, 2) 12 8 (0)(1 12 11 18 7 8)(2 5 3 17 14 16)

(4 10 6 15 9 13)
21 (5, 1) 5 17 (0)(1 5 4 20 16 17)(2 10 8 19 11 13)

(3 15 12 18 6 9)(7 14)
31 (6, 1) 6 26 (0)(1 6 5 30 25 26)(2 12 10 29 19 21)

(3 18 15 28 13 16)(4 24 20 27 7 11)
(8 17 9 23 14 22)

37 (7, 3) 27 11 (0)(1 27 26 36 10 11)(2 17 15 35 20 22)
(3 7 4 34 30 33)(5 24 19 32 13 18)
(6 14 8 31 23 29)(9 21 12 28 16 25)

39 (7, 2) 23 17 (0)(1 23 22 38 16 17)(2 7 5 37 32 34)
(3 30 27 36 9 12)(4 14 10 35 25 29)
(6 21 15 33 18 24)(8 28 20 31 11 19)(13 26)

43 (7, 1) 7 37 (0)(1 7 6 42 36 37)(2 14 12 41 29 31)
(3 21 18 40 22 25)(4 28 24 39 15 19)
(5 35 30 38 8 13)(9 20 11 34 23 32)
(10 27 17 33 16 26)

49 (8, 3) 19 31 (0)(1 19 18 48 30 31)(2 38 36 47 11 13)
(3 8 5 46 41 44)(4 27 23 45 22 26)
(6 16 10 43 33 39)(7 35 28 42 14 21)
(9 24 15 40 25 34)(12 32 20 37 17 29)

57 (8, 1) 8 50 (0)(1 8 7 56 49 50)(2 16 14 55 41 43)
(3 24 21 54 33 36)(4 32 28 53 25 29)
(5 40 35 52 17 22)(6 48 42 51 9 15)
(10 23 13 47 34 44)(11 31 20 46 26 37)
(12 39 27 45 18 30)(19 38)

61 (9, 4) 48 14 (0)(1 48 47 60 13 14)(2 35 33 59 26 28)
(3 22 19 58 39 42)(4 9 5 57 52 56)
(6 44 38 55 17 23)(7 31 24 54 30 37)
(8 18 10 53 43 51)(11 40 29 50 21 32)
(12 27 15 49 34 46)(16 36 20 45 25 41)

Figure 4
Anticlockwise from top left to top right: square sublattice with minimal
index Qð3; 1Þ ¼ 10 for a full cycle structure; square sublattice with
Qð3; 2Þ ¼ 13; hexagonal sublattice with Tð4; 1Þ ¼ 13; hexagonal sublat-
tice with minimal index Tð5; 1Þ ¼ 21 for a full cycle structure. Points
equivalent under the symmetry operation of a six- or fourfold rotation
point are distinguished by a distinct polyhedral hull and given with their
ðXi;YiÞ coordinates for the index 13 sublattices: ðxi; yiÞ ¼ ð1=13ÞðXi;YiÞ.



tion of these sites would inevitably result in a nonprimitive

sublattice. Finally, the d-lettered Wyckoff positions represent

crystallographic orbits with a number of points equalling the

order of the point group, and, correspondingly, a full-length

cycle representation. Thus, the Wyckoff sequence is either

pN; dna or pN; dnba; ð31Þ

where N corresponds to the order of the rotation axis, i.e.

N ¼ 6 (or 4), and n is the number of cycles of length ‘ ¼ 6 (or

4).

9. Generalized cycle representations

From the aforementioned findings it is conjectured that

ð0ÞðZi 1 . . . Zi 6Þ
n
i¼1 8T j 0 6� T ðmod 3Þ

! T ¼ 6nþ 1

ð0ÞðZi 1 . . . Zi 6Þ
n
i¼1ð

1
3 T 2

3 TÞ 8T j 0 � T ðmod 3Þ

! T ¼ 6nþ 3

and

ð0ÞðZi 1 . . . Zi 4Þ
n
i¼1 8Q j 0 6� Q ðmod 2Þ

! Q ¼ 4nþ 1

ð0ÞðZi 1 . . . Zi 4Þ
n
i¼1ð

1
2 QÞ 8Q j 0 � Q ðmod 2Þ

! T ¼ 4nþ 2

are the general forms for the cycle representations of primitive

hexagonal and square sublattices of arbitrary index. The

special multipliers � (and �) associated with these cycle

representations share the property

1 � �6
ðmod TÞ and 1 � �4

ðmod QÞ: ð32Þ

Equation (32) gives a simple alternative for the determination

of the special multipliers associated with certain lattice–

sublattice transformations. From the definition of the multi-

plicative inverse it follows that

1 � �‘ � �‘�1� � �� ðmod MÞ ð33Þ

) � � �‘�1 ðmod MÞ: ð34Þ

Furthermore it is conjectured that

�þ � ¼ T þ 1 and �þ � ¼ Q

holds true consistently.

10. MCGs with irrational parameters

An MCG is defined by two parameters, its modulus M and a

general multiplier m. Essentially these numbers define two

fundamental periodicities (length scales), with their ratio

m=M being a rational number, causing the cyclic behavior of

the MCG after M successive steps (cf. Fig. 3). To put it another

way, one can say that m and M are commensurate. What

happens if m and M are incommensurate? This requires the

ratio m=M to be irrational, � ¼ m=M 62 Q, and the definition

of a modulo operator in order to include real numbers. This is

done according to

ðx mod MÞ ¼ x�Mbx=Mc; ð35Þ

where �b c denotes the floor function, which gives the largest

integer less than or equal to its argument. As a consequence

the sequence of numbers generated by the MCG will no

longer be cyclic and will never reach the seed value again. That

is,

1 6¼ ð�n mod MÞ ð36Þ

for any n 2 N. In a way the exact value of the modulus

becomes irrelevant, thus it would be justifiable to set it to

unity, constructing another type of MCG. The action of a unit

modulus may be conceived as a back-projection of values
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Table 4
Scheme showing the one-to-one correspondence between the cycle
structure of an MCG and the Wyckoff sequence of a crystal structure.

Cycle (0) ð13 T 2
3 TÞ – ðZi 1 . . . Zi 6Þ

n
i¼1

p6 (x, y) 0 0 1
3

2
3 0 1

2 x y
Wyckoff positions 1a 2b 3c 6d

p4 Wyckoff positions 1a 1b 2c 4d
(x, y) 0 0 1

2
1
2 0 1

2 x y

Cycle (0) ð12 QÞ – ðZi 1 . . . Zi 4Þ
n
i¼1

Table 2
Cycle decompositions of primitive square similar sublattices (Q � 61).

Q (q, s) � � Cycle representation

2 (1, 1) 1 1 (0)(1)
5 (2, 1) 2 3 (0)(1 2 4 3)

10 (3, 1) 3 7 (0)(1 3 9 7)(2 6 8 4)(5)
13 (3, 2) 8 5 (0)(1 8 12 5)(2 3 11 10)(4 6 9 7)
17 (4, 1) 4 13 (0)(1 4 16 13)(2 8 15 9)(3 12 14 5)(6 7 11 10)
25 (4, 3) 18 7 (0)(1 18 24 7)(2 11 23 14)(3 4 22 21)(5 15 20 10)

(6 8 19 17)(9 12 16 13)
26 (5, 1) 5 21 (0)(1 5 25 21)(2 10 24 16)(3 15 23 11)(4 20 22 6)

(7 9 19 17)(8 14 18 12)(13)
29 (5, 2) 17 12 (0)(1 17 28 12)(2 5 27 24)(3 22 26 7)(4 10 25 19)

(6 15 23 14)(8 20 21 9)(11 13 18 16)
34 (5, 3) 13 21 (0)(1 13 33 21)(2 26 32 8)(3 5 31 29)(4 18 30 16)

(6 10 28 24)(7 23 27 11)(9 15 25 19)
(12 20 22 14)(17)

37 (6, 1) 6 31 (0)(1 6 36 31)(2 12 35 25)(3 18 34 19)(4 24 33 13)
(5 30 32 7)(8 11 29 26)(9 17 28 20)(10 23 27 14)
(15 16 22 21)

41 (5, 4) 32 9 (0)(1 32 40 9)(2 23 39 18)(3 14 38 27)(4 5 37 36)
(6 28 35 13)(7 19 34 22)(8 10 33 31)
(11 24 30 17)(12 15 29 26)(16 20 25 21)

61 (6, 5) 50 11 (0)(1 50 60 11)(2 39 59 22)(3 28 58 33)(4 17 57 44)
(5 6 56 55)(7 45 54 16)(8 34 53 27)(9 23 52 38)
(10 12 51 49)(13 40 48 21)(14 29 47 32)
(15 18 46 43)(19 35 42 26)(20 24 41 37)
(25 30 36 31)

Table 3
Crystallographic counterparts to terms used for the characterization of
MCGs.

Multiple congruential generators Lattice–sublattice transformations

Modulus M Index T or Q
MCG-induced permutation Symmetry group
Pairs of successive cycle elements Lattice-point coordinates
Single cycle Crystallographic orbit
No. of cycles No. of Wyckoff positions
Cycle lengths ‘ Wyckoff multiplicities
Cycle representation Wyckoff sequence



exceeding unity into the interval ½0; 1Þ. In the same way as

before, a two-dimensional plot is generated by factoring out

pairs of successive numbers,

pn ¼ zn; znþ1

� 	
¼ �n�1 z1 mod 1

� 	
; �n z1 mod 1ð Þ

� 	
: ð37Þ

In the limit where n!1 the set of points fpng
n
n¼1 will densely

cover the unit mesh (except its origin).

Bowman (1995) introduced the LCG

Znþ1 � 157Zn þ 1 ðmod�Þ ð38Þ

with an irrational modulus, whereas the irrationality of the

MCG

znþ1 ¼ ð100 ln zn mod 1Þ
�� �� ð39Þ

proposed by Pickover (1995) for a seed z0 ¼ 0:1 and

n 2 N [ f0g stems from taking the natural logarithm of the

seed and the successive values. The first few points resulting

from Pickover’s LCG are ð0:1; 0:258 . . .Þ, ð0:258 . . . ; 0:282 . . .Þ,
ð0:282 . . . ; 0:456 . . .Þ, and a two-dimensional plot of the first

10 000 points is given by the (minimally functional) Mathe-

matica code

X½x � ¼ Abs½FractionalPart½100 Log½x���;

Show½Graphics½Table½

Point½fNest½X; 0:1; n�; Nest½X; 0:1; nþ 1�g�;

fn; 0; 9999g��;

PlotRange�> ff0; 1g; f0; 1gg;

AspectRatio�> 1; Frame�> True�

and depicted in Fig. 5.

Both LCGs yield pseudo-random number sequences which

pass all the standard tests judging their randomness. Without

knowing their generation method in advance, these sequences,

despite being totally deterministic, are barely discernible from

a true random sequence derived via a stochastic process like

coin flipping! In fact, all MCGs exhibit properties similar to

deterministic chaotic dynamical processes, namely Bernoulli

shifts (Herring & Palmore, 1989).

In a way there is plenty of room to play with the parameters,

taking either the modulus, the multiplier or the seed as irra-

tional, or using combinations of parameters, or using MCGs

that result in an irrational behavior. However, in nearly all

cases where the parameters were chosen at random, there

remains a remarkable tendency for lattice-like structures (for

finite values of n, especially low ones), whereas in a strict

mathematical sense, there is no lattice structure present

anymore, but instead that of a Z-module. This owes much

similarity to aperiodic crystals, among them incommensurately

modulated structures and quasicrystals.

In order to study approximations to incommensurate

structures it would be nice to find such irrational multipliers

that ‘approximate’ an integer multiplier in some predictable

way. By the Lindemann–Weierstrass theorem any number e� is

transcendental, and thus irrational, for which � is a nonzero

algebraic, e.g. rational, number (e is Euler’s constant). Given

an integer multiplier � we may search for an irrational

multiplier � ¼ e� for which � is arbitrarily close to �. Setting

� ¼ ln�, however, results in a rational multiplier

� ¼ eln� ¼ �. The natural logarithm of any integer n � 2 is an

irrational number, and so is ln�. Any irrational number can be

approximated to arbitrary precision by a sequence of rational

numbers (convergents) ri, with consecutive elements of the

sequence given by a stepwise truncation of terms of the irra-

tional numbers infinite continued fraction expansion. Thus,

irrational numbers of the type er, r 2 Q, where the r’s corre-

spond to ever-improving rational approximations of ln�, give

an ever-improving ‘approximate’ of the integer multiplier �.

With respect to crystal structures this situation is quite

contrary to the well known approach of approximating an

incommensurate crystal structure by a series of commensurate

structures. Here, instead, we define a series of irrational MCGs

related to a single rational one.

11. MCGs in structural chemistry and biology

The use of MCGs in the aforementioned way is essentially

restricted to two-dimensional cases, although there exists an

intrinsic lattice structure for MCGs in Euclidean space of

arbitrary dimension. Below we give some suggestions about

chemical and biological systems in which the use of MCGs

may prove beneficial.

11.1. Planar systems in two dimensions

Essentially, two-dimensional systems encountered in solid-

state chemistry, where lattice–sublattice transformations of

the aforementioned type are of significant importance, are

self-assembling monolayers, intercalation compounds (e.g. of

alkaline metals in graphite) and certain types of layered

structures.
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Figure 5
Two-dimensional plot for the first 10 000 points ðzn; znþ1Þ generated by
Pickover’s MCG [equation (39)]. No perceivable sublattice structure is
seen.



An example of the latter are transition-metal dichalcogen-

ides MQ2, which generally show strong bonding interactions

inside the two-dimensional layers and weak ones perpendi-

cular to them, i.e. between adjacent layers of Q atoms.

Compounds of this type are often subject to an electronic

distortion due to the presence of a charge-density wave,

resulting in an incommensurate modulation of the structure

with complex lock-in superstructures frequently observed.

The disulfides, diselenides and ditellurides of the transition

metals vanadium, titanium, niobium and tantalum, for

instance, crystallize in two-dimensional superstructures with

sublattice indices of T = 3, 4, 7, 13, 16, 19, 31 (van Landuyt et

al., 1978).

A second example is given by a description of the crystal

structures of a number of structurally complex intermetallic

compounds, among them the quasicrystal approximant struc-

ture of �-Al4Mn, in terms of stacked atom layers (Uchida &

Matsui, 2000). Each of these layers is derived from the hexa-

gonal closest packing of atoms in a plane containing a certain

amount of vacant sites. The two-dimensional ordering of

atoms and vacancies now defines a lattice–sublattice relation

of the aforementioned kind. Hence, the ideal positions of

atoms and vacancies are given by an MCG.

Another example is taken from the structural chemistry of

intermetallic alloys. The crystal structures of Au7In3 (Pušelj &

Schubert, 1975), Co2Zn15 (Boström & Lidin, 2002) and IrZn3

(Hornfeck et al., 2004) are examples of complex metallic

alloys, each encompassing 60 atoms in a hexagonal unit cell of

similar metric. The analysis and description of such structures

is usually complicated by the high degree of topological

interconnection between the constituent atoms, giving rise to

high coordination numbers and a pronounced interpenetra-

tion of coordination polyhedra. Whereas the crystal structures

of Co2Zn15 and IrZn3 are easily described and compared after

analyzing the flat and puckered layers of atoms perpendicular

to the c direction, a similar approach fails for the Au7In3

structure, although the projection along c affirms the close

structural relationship to IrZn3. Dissecting the structures

along the ½140� direction, however, resolves this problem.

Including nearby atoms the section ½140� � ½001� contains all

the 60 atoms of both unit cells, facilitating a direct comparison

and plotting of the structures without any interference due to

overlapping atoms (see Fig. 6).

11.2. Generalization to non-Euclidean two-dimensional
spaces

Since the seminal work of Caspar & Klug (1962) there is the

notion in the structural biology of viruses that the capsid

structure of a majority of icosahedral viruses – icosahedral in

terms of symmetry rather than shape – can be described by

means of triangular surface lattices, giving each capsomer a

high-symmetry quasi-equivalent surrounding. Regarding its

structure, an icosahedral virus is therefore classified by its

triangulation number, being identical to the sublattice index T

used throughout this report. From a chemist’s point of view it

is fascinating that viruses realize both forms of enantiomor-

phous surface lattices, e.g. a T ¼ 7d (dextro) surface lattice for

the polyomavirus SV40 and a T ¼ 7l (laevo) surface lattice for

the prohead of bacteriophage HK97 (Chiu et al., 1997),

whereas Nature prefers one sense of chirality elsewhere

(amino acids, sugars).

Besides the generalization to spherical geometry, there is an

ongoing interest in solid-state chemistry in two-dimensional

hyperbolic tilings (see e.g. Nesper & Leoni, 2001; Hyde &

Ramsden, 2003; Ramsden et al., 2009).

According to Fig. 7 a generalization to non-Euclidean

spaces seems straightforward, and even though some of the

correspondences present in two-dimensional Euclidean space

will get lost, some others may possibly emerge.

12. Conclusion

It is well known that MCGs offer an elegant and thus well

established algorithmic method for the sequential generation

of high-quality pseudo-random numbers.

Their inherent lattice structure, however, extensively

researched by mathematicians for high moduli and multipliers,
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Figure 6
Comparison of the crystal structures of IrZn3 and Au7In3 taking
advantage of the fact that there exists a direction, here e.g. ½140�, for
which every lattice point in a primitive hexagonal sublattice is reached
successively. Shown are projections of the crystal structures parallel (a)
and perpendicular (b) to the trigonal axis, and sections taken along ½140�
(c).



and for spaces of arbitrary dimensions, proves to be of its own

interest in the crystallographic description of two-dimensional

structures exhibiting a lattice–sublattice (group–subgroup)

relationship with possible embeddings in spaces of positive,

zero or negative curvature.

Of particular interest herein is the cycle structure of the

permutations associated with an MCG of given modulus,

which, for a special selection of multipliers, favors a one-to-

one correspondence with crystallographic notions like crys-

tallographic orbits, Wyckoff multiplicities or Wyckoff

sequences. In this context the concept of an MCG seems to

have some didactic value, too.

Additionally, the calculation of lattice-point coordinates

employing an MCG need not make use of matrix inversion or

multiplication operations, with the MCG containing all the

information about the whole set of coordinates within a single,

concise, size-independent (regarding the sublattice index)

formula – which therefore is easier to implement, faster to

evaluate, more elegant in notation, and, if nothing else, easy to

remember.

The authors wish to thank Michael Baake and Peter Zeiner

for their interest, a pleasant stay in Bielefeld (WH) and

helpful discussions, and Ulrich Müller for his valuable

comments.
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Figure 7
Hexagonal Tð3; 2Þ ¼ 7 sublattice embedded on two-dimensional surfaces
with constant positive (spherical embedding, spherical polyhedron view),
zero (planar embedding, Euclidean plane view) or negative (hyperbolical
embedding, Poincaré disc model view; Brant, 2007) curvature. Note that
in each case there is an enantiomorphic sublattice. The above illustrations
are the special cases n = 5, 6, 7 of the so-called snub n-gonal tilings with
Schläfli symbol sf3; ng and vertex-configuration 34n [see Schläfli (1950)
for a description of the symbols bearing his name]. The first members are
the icosahedron (n = 3), one of the regular (Platonic) solids, and the snub
cube (n = 4), one of the semi-regular (Archimedean) solids. The case n = 5
depicts a spherical polyhedral view of the snub dodecahedron, another
semi-regular (Archimedean) solid. Members with 3 � n< 6 are convex
polyhedra, whereas the ones with n> 6 are concave ones, with a semi-
regular (Archimedean) tiling representing the planar case, for which
n ¼ 6. The generalization to sublattices of higher index T is straightfor-
ward.


